Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian Gao* and Yu Liu

Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan 250100,
People's Republic of China

Correspondence e-mail: j.gao@hotmail.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.100$
Data-to-parameter ratio $=18.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquabis(vanillinato- $\kappa^{2} O, O^{\prime}$)manganese(II)

In the title complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Mn}^{\text {II }}$ atom is located on a twofold axis and is coordinated by two vanillinate anions and two water molecules in a distorted octahedral geometry. The vanillinate ligand chelates to the $\mathrm{Mn}^{\mathrm{II}}$ atom through its methoxy and hydroxy O atoms, with greatly differing $\mathrm{Mn}-\mathrm{O}$ bond distances $[2.3506(14)$ and 2.0901 (12) Å].

Comment

Water oxidation in the photosynthetic process of green plants (Bruckner et al., 1993) is generally believed to occur at the manganese cluster located in the reaction centre of photosystem II (Vincent \& Christou, 1989). In order to mimic this manganese cluster, a series of manganese complexes have been synthesized, among which some crystal structures revealed the existence of significant electrostatic interaction between the Mn atom and the ligand (Nie et al., 2001; Hu et al., 2001; Liu \& Xu, 2003). The structure of the title complex, (I), provides a new example of this electrostatic interaction in an $\mathrm{Mn}^{\mathrm{II}}$ complex.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The $\mathrm{Mn}^{\mathrm{II}}$ atom is located on a twofold axis. Two vanillinate anions and two water molecules coordinate to the $\mathrm{Mn}^{\mathrm{II}}$ atom in a cis fashion in a distorted octahedral geometry. The vanillinate ligand chelates to the $\mathrm{Mn}^{\mathrm{II}}$ atom with greatly differing $\mathrm{Mn}-\mathrm{O}$ bond distances: the $\mathrm{Mn}-\mathrm{O} 1$ bond is longer than the $\mathrm{Mn}-\mathrm{O} 2$ bond by 0.2605 (18) \AA (Table 1), implying a weaker coordination interaction between atoms Mn and O1. However, the $\mathrm{O} 1-\mathrm{Mn}-\mathrm{O} 4$ angle of $168.45(5)^{\circ}$ is close to the expected value of 180° and much larger than the $\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 2^{\mathrm{iii}}$ angle of $156.79(5)^{\circ}$ [symmetry code: (iii) $-x, y, \frac{1}{2}-z$], implying significant overlap between the atomic orbitals of atoms Mn and O 1 . This fact clearly suggests a significant contribution from the electrostatic interaction in the $\mathrm{Mn}-\mathrm{O}$ bonding.

Received 27 July 2005 Accepted 28 July 2005 Online 6 August 2005

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids [symmetry code: (iii) $-x, y, \frac{1}{2}-z$].

The coordinated water molecules are hydrogen bonded to the aldehyde and hydroxyl O atoms of neighbouring complex molecules (Fig. 2 and Table 2).

Experimental

An ethanol solution (20 ml) containing vanillin $(0.152 \mathrm{~g}, 1 \mathrm{mmol})$, $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.245 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{NaOH}(0.08 \mathrm{~g}, 2 \mathrm{mmol})$ was refluxed for 2 h . The yellow solution was cooled to room temperature and filtered. Yellow crystals of (I) were obtained from the filtrate after one week.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$D_{x}=1.460 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=393.24$	Mo K α radiation
Monoclinic, $C 2 / c$	Cell parameters from 6329
$a=22.4629(5) \AA$	reflections
$b=10.5743(2) \AA$	$\theta=3.4-27.5^{\circ}$
$c=7.8600(2) \AA$	$\mu=0.78 \mathrm{~mm}^{-1}$
$\beta=106.5648(9)^{\circ}$	$T=296(1) \mathrm{K}$
$V=1789.50(7) \AA^{3}$	Block, yellow
$Z=4$	$0.30 \times 0.24 \times 0.22 \mathrm{~mm}$
Data collection	
Rigaku R-AXIS RAPID	2050 independent reflections
\quad diffractometer	1795 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.011$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-29 \rightarrow 29$
$T_{\text {min }}=0.757, T_{\text {max }}=0.843$	$k=-13 \rightarrow 13$
8384 measured reflections	$l=-10 \rightarrow 10$

$T_{\text {measured reflections }}$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0624 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.30 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.36 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn}-\mathrm{O} 1$	$2.3506(14)$	$\mathrm{O} 1-\mathrm{C} 8$	$1.420(3)$
$\mathrm{Mn}-\mathrm{O} 2$	$2.0901(12)$	$\mathrm{O} 2-\mathrm{C} 6$	$1.312(2)$
$\mathrm{Mn}-\mathrm{O} 4$	$2.1118(14)$	$\mathrm{O} 3-\mathrm{C} 7$	$1.223(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.380(2)$		

Figure 2
A molecular packing diagram for (I), with dashed lines indicating the hydrogen bonding.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{i}}$	0.85	1.88	$2.726(2)$	176
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 4 B \cdots \mathrm{O} 2^{\text {ii }}$	0.79	1.93	$2.6977(18)$	166

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x,-y+1,-z+1$.
Water H atoms were located in a difference Fourier map and their positional parameters and displacement parameters were fixed $\left[U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}\right]$. The H atoms of the vanillinate anions were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (phenyl and aldehyde group) or $0.96 \AA$ (methyl), and included in the final cycles of refinement in a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Dr Jian-Ming Gu for assistance with the data collection.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruckner, S., Menabue, L. \& Saladini, M. (1993). Inorg. Chim. Acta, 24, 185191.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hu, M.-L., Cheng, D.-P., Liu, J.-G. \& Xu, D.-J. (2001). J. Coord. Chem. 53, 7-13.
Liu, Y. \& Xu, D.-J. (2003). J. Coord. Chem. 56, 59-64.
Nie, J.-J., Liu, L.-J., Luo, Y. \& Xu, D.-J. (2001). J. Coord. Chem. 53, 365-371.
Rigaku (1998). PROCESSAUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Vincent, J. B. \& Christou, G. (1989). Adv. Inorg. Chem. 28, 197-201.

